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11
Operations

The famous Swiss mathematician
Jakob Bernoulli (1654–1705)con-
ceived of a sequence of statistical
trials, each of which yields one of
two mutually exclusive outcomes
(“heads” or “tails”), with probabili-
ties that are fixed across trials.

The celebrated probabilistWilliam
Feller (1906–1970), who studied at
Zagreb and G̈ottingen, made sig-
nificant advances in many areas
of probability, including Brownian
motion, diffusion theory, and dead-
time-modified counting processes.
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A number of transformations exist by means of which one or more point processes
{dN1(t), . . . , dNn(t)} are converted into a new point processdNR(t). We focus on
six such operations in the context of fractal and fractal-rate point processes:

• Dilation, which involves contracting or expanding the time axis of a counting
process.

• Deletion, which eliminates selected events of a point process according to a
specified rule, examples of which include:

1. Retaining everỳ th event with all others eliminated (decimation);

2. Subjecting each event to an independent Bernoulli trial in which it is
deleted with a fixed probability (random deletion or thinning );

3. Eliminating events if they follow other events more closely than a specified
time interval (dead-time deletionor refractoriness deletion).

• Displacement, where we modify the occurrence time of each event of a point
process in a specified manner, for example by jitter.

• Interval transformation , where the ordering of the intervals remains un-
changed but we transform the interval density to a different form, for example
an exponential density.

• Shuffling, where we randomize the interevent-interval ordering in a particular
way, while the interval probability density is constrained:
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1. We randomly reorder the intervals and preserve the original interval den-
sity (full shuffling );

2. We randomly reorder the intervals within blocks of a realization and retain
the original interval density (block shuffling);

3. We select intervals with replacement, thereby generating a renewal pro-
cess (bootstrap method).

• Superposition, which forms a new point process from the sum of a collection
of point processes.

Transformations such as these play important roles in the identification of point
processes. In some cases, they are inherent in the measured events. This can occur
because: (1) they are intrinsic to the underlying process; (2) they are unavoidably
imposed by the detection/measurement system recording the events. Commonly en-
countered operations in the physical and biological sciences include Bernoulli random
deletion, dead-time deletion, displacement, and superposition.1

In other cases, experimenters deliberately use such transformations to create surro-
gate data sets that are useful for elucidating the underlying nature of an observed point
process2 (Schiff & Chang, 1992; Theiler, Eubank, Longtin, Galdrikian & Farmer,
1992; Ott et al., 1994). The shuffling and exponentialization operations, for example,
prove valuable for determining whether the fractal behavior observed in a sequence of
action potentials stems from the form of the interevent-interval density, the ordering
of the intervals, or both.3 Examples that illustrate these operations appear throughout
this chapter.

Operations such as decimation and dead-time deletion are also sometimes used to
deliberately reduce the variability of a point process [see, for example, Saleh & Teich
(1985b) and Teich & Cantor (1978), respectively].

We devote this chapter to determining the effect of each of these transformations
on the relevant point-process statistics, and illustrating how these operations affect
the nature of fractal and fractal-rate point processes.

1 Examples in which these four transformations are intrinsic to the underlying process appear in Teich
& Khanna (1985); Teich, Matin & Cantor (1978); Teich et al. (2001); and Palm (1943), respectively.
Examples in which they are imposed in the course of measurement appear in Teich & Saleh (1982); Teich
& Vannucci (1978); Teich, Khanna & Guiney (1993); and Abeles, de Ribaupierre & de Ribaupierre (1983),
respectively.
2 The creation of surrogate data resembles the creation of “knockout mice,” a biological procedure de-
veloped in the mid-1980s to study gene function (see Evans, Smithies & Capecchi, 2001). Knockout
animals are created by replacing a specific natural gene with an inactive or mutated allele. The behavior
or performance of the “surrogate mouse” provides information about the role played by the gene.
3 Other operations also create useful surrogates. Phase randomization in the Fourier domain, for example,
preserves the spectral magnitude and therefore the second-order properties of a point process. Since
this procedure removes other temporal structure, it yields information about the presence or absence of
deterministic chaos in a system [see, for example, Turcott & Teich (1996) and Teich et al. (2001)].
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11.1 TIME DILATION

Time dilation is, perhaps, the simplest of operations that can be carried out on a point
process (Papangelou, 1972). The time axist of a counting process is expanded or
contracted by a factorc that is, respectively, larger or smaller than unity:

NR(t) = N1(t/c). (11.1)

Forming the point process as the derivative of the counting process introduces an
additional factor4 of 1/c,

dNR(t) = c−1 dN1(t/c). (11.2)

This factor carries through to the statistics of the point process in a straightforward
manner. Four cases exist, depending on whether the measure or its arguments (if
any) has dimensions of real time (sec) or frequency (Hz). The simplest case obtains
when the statistic neither has units, nor takes arguments with units, as is true for the
interval-based skewness, kurtosis, rescaled range, and generalized dimensions. For
these statistics, dilation causes no change.

We next consider the case where the measure itself has no units but takes arguments
that do. These follow relations similar to those for the point process as a whole:

interval distribution PτR(t) = Pτ1(t/c)
normalized count variance FR(T ) = F1(T/c)
normalized wavelet count variance AR(T ) = A1(T/c)
count autocorrelation RZR(k, T ) = RZ1(k, T/c).

(11.3)

Some interval statistics do have units, but do not take arguments with units, which
leads to multiplicative factors for the measures themselves:

interval moments E[τn
R] = cn E[τn

1 ]
interval variance Var[τR] = c2 Var[τ1]
interval autocorrelation RτR(k) = c2 Rτ1(k)
interval spectrum SτR(f) = c2 Sτ1(f),

(11.4)

and similarly for the interval wavelet variance.
Finally, for statistics that have units and also take arguments with units, multiplica-

tive factors appear in the measures themselves as well as in their arguments:

interval probability density pτR(t) = c−1 pτ1(t/c)
coincidence rate GR(t) = c−2 G1(t/c)
point-process spectrum SNR(f) = c−1 SN1(cf)
general-wavelet variance Var[Cψ,NR(a, b)] = c−1 Var[Cψ,N1(a/c, b/c)].

(11.5)

4 However, the delta functions that comprisedNR(t) do not change sinceaδ(at) = δ(t) for all positive,
finite a, as discussed in Sec. 4.4.
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EVENT DELETION 229

The foregoing establishes that dilation simply alters the relevant time scales. It
does not convert a fractal point process into a fractal-rate point process, nor the
opposite. All of the fractal-based point processes we consider therefore retain their
form under time dilation and maintain their scaling exponents, although intrinsic
times (and frequencies) such as the mean interval and fractal onset time change by
the factorc.

11.2 EVENT DELETION

Event deletion forms another class of operations on point processes. We consider
three subclasses of deletion that differ in how events are selected for elimination: (1)
Decimation, in which everỳ th event survives while all others do not; (2)Random
deletion, where each event survives with a probabilityr that is independent of the
survivals of other events and of the point process itself; and (3)Dead-time deletion,
in which the probability of survival of an eventr(t) resets to zero following each sur-
viving event, and thence increases monotonically to unity. Figure 11.1 schematically
illustrates how these three types of event deletion operate on a representative point
process.

11.2.1 General results

How does the deletion of events affect a fractal or fractal-rate point process? Assuming
that the deletion probability does not itself exhibit significant long-term fluctuations,5

the deleted process, although altered, remains a member of the fractal family of point
processes with the same fractal exponent.

To understand how this comes about, consider a fractal or fractal-rate point process
with mean interevent timeE[τ1], fractal exponentα1, and fractal onset frequencyfS1.
Over a range of frequencies, the spectrum follows the form of the mid-frequency term
in Eq. (5.44a):

SN1(f) ≈ E[µ1] (f/fS1)−α1 . (11.6)

Suppose now that we retain some proportionr of the events indN1(t) to form
dNR(t), where the selection probability of these points is devoid of low-frequency
components. Decimation and random deletion, discussed in Secs. 11.2.2 and 11.2.3,
respectively, do not selectively alter the low-frequency components of the process
so that the following considerations apply to these deletion processes. On the other
hand, dead-time deletion, discussed in Sec. 11.2.4, violates this condition so that

5 We mention this caveat since such behavior can affect the fractal characteristics of a point process.
Suppose, for example, thatdN1(t) belongs to the homogeneous Poisson-process family and that the
deletion process selects events fromdN1(t) with a probabilityr(t) described by a fractal Gaussian process.
The resultant deleted processdNR(t) then belongs to the fractal-Gaussian-process-driven Poisson-process
family and hence exhibits the fractal characteristics imparted to it byr(t).
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TIME t

d) DEAD-TIME DELETION

c) RANDOM DELETION

b) DECIMATION

a) ORIGINAL POINT PROCESS

-
6 6 6 6 6

-
6 66 66

-
6 6 6 6 6

-
6 6 666 6 66 6 6

Fig. 11.1 The effect of different types of event deletion on a representative point process.
Arrows indicate surviving events; dashed lines indicate deleted events. (a)Original point
process. (b)Decimated point process: Every ` th event survives, here with̀ = 2. (c)
Randomly deleted point process: Events are randomly deleted, here with survival probability
r = 1

2
so that roughly half of the events survive the deletion process; no particular pattern

emerges since each event deletion is independent of the others and of the form of the point
process. (d)Dead-time-modified point process: We choose a fixed dead time in this illustration
so thatr(t) switches abruptly from zero to unity at the expiration of the dead-time intervalτf ;
the rectangles beginning at each surviving event serve to illustrate the duration of this interval
and do not form part of the resulting point process.

the following results do not necessarily apply. The point-process spectrum for a
fractal-rate process subjected to dead time is instead provided in Eq. (11.30).

Since the mean rate changes by the factorr, we haveE[τR] = E[τ1]/r. Consider
the spectrum at a particular frequencyf that lies within the scaling range of frequen-
cies. This quantity derives from the squared magnitude of a Fourier transform, so
that reducing the number of events to a fractionr of the initial number results in a
decrease in the Fourier transform by this same fraction. The spectrum thus changes
by the factorr2 at intermediate frequencies, which provides

SNR(f) = r2SN1(f)
≈ r2E[µ1] (f/fS1)−α1

= E[µR] (f/fSR)−α1 , (11.7)
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EVENT DELETION 231

with fractal onset frequencyfSR = fS1 r1/α.
We conclude that the fractal exponent of the process remains unchanged while

the fractal onsetfrequencychanges by the factorr1/α, which serves to reduce the
magnitude of the fractal component. The onsettimesof other second-order mea-
sures thus increase by the factorr−1/α. At higher frequencies no correlation exists
among events in the point process so that the spectrum varies linearly (rather than
quadratically) withr, whereupon

lim
f→∞

SNR(f) = E[µR] = rE[µ1] = r lim
f→∞

SN1(f). (11.8)

11.2.2 Decimation

The deletion of the initial̀−1 of every` events (retaining everỳth event) generally
changes the nature of a point process and tends to reduce fluctuations in all measures.
The quantitỳ is known as thedecimation parameter. We illustrate this operation in
Fig. 11.1b) for̀ = 2. Consider, for example, a homogeneous Poisson processdN1(t):
in accordance with the results provided in Sec. 4.1, the coefficient of variation of the
intervals,Cτ =

√
Var[τ ]

/
E[τ ], assumes a value of unity, as does the normalized

variance of the counts,F (T ), for all counting timesT . Retaining thè th, 2` th,
3` th,. . . events of such a process results in a gamma renewal process of order` = m
(see Prob. 4.7 and, for example, Parzen, 1962; Cox, 1962; Cox & Isham, 1980).
The coefficient of variation of the intervals becomes1/

√
` whereasthe normalized

varianceF (T ) becomes1/` for large counting timesT . The diminution of both of
these quantities indicates that the point process has reduced variability.

Similar results obtain for an arbitrary point process; orderly deletion generally
modifies the form of the point process and reduces the fluctuations. Two notable
exceptions exist, however. A renewal point process, under decimation, remains within
the fold of the renewal-process family despite the fact that it becomes a different
process. Integrate-and-reset processes form the second exception. The deletion of
the first` − 1 of every` events in such a process yields results identical to those
obtained by decreasing the rate of the process by the same factor`.

For an arbitrary fractal-based point processdN1(t), decimation leads to a process
dNR(t) that continues to belong to the family of fractal-based point processes, with
parameters given by Eq. (11.7) and its associated results, despite possible changes to
the form of the point process.

11.2.3 Random deletion

We now consider the consequences of subjecting every event of a point processdN1(t)
to a Bernoulli trial (van der Waerden, 1975), which it survives with probabilityr or
fails to survive with probability(1 − r) (Palm, 1943; Parzen, 1962; Cox & Isham,
1980). We depict this operation in Fig. 11.1c) forr = 1

2 .
The Burgess variance theorem(Burgess, 1959) leads to a simple relationship

between the normalized count variance for an arbitrary point process and that of its
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randomly deleted cousin (Teich & Saleh, 1982):

FR(T )− 1 = r [F1(T )− 1]. (11.9)

We can readily extend Eq. (11.9) to the collection of measures set forth in Chapter 3.
Beginning with Eq. (3.41), we immediately obtain an analogous relation between the
normalized Haar-wavelet variances:

AR(T )− 1 = r [A1(T )− 1]. (11.10)

Continuing along these same lines, Eq. (3.55) reveals that the coincidence rate requires
multiplication by a factor ofr2, since bothE[µ] andF (T ) − 1 decrease by a factor
of r, but the delta function att = 0 is subjected only to a factor ofr, so that

GR(t)− E[µR] δ(t) = r2
{
G1(t)− E[µ1] δ(t)

}
. (11.11)

This result, in turn, propagates to the count autocorrelationRZ(k, T ) via Eq. (3.54),
which provides

RZR(k, T )− E[µR] T = r2
{
RZ1(k, T )− E[µ1]T

}
, (11.12)

and to the point-process spectrumSN (f) through Eq. (3.57), which gives rise to

SNR(f)− E[µR] = r2
{
SN1(f)− E[µ1]

}
. (11.13)

Fractal onset times increase byr−1/α, and fractal onset frequencies decrease byr1/α,
maintaining the validity of Eq. (5.45).

As with decimation, random deletion generally alters the nature of a point process.
This operation causes the resulting processdNR(t) to ultimately move toward the
homogeneous Poisson process, whatever its original form (Rényi, 1956; Kallenberg,
1975; Wescott, 1976). Random deletion thus serves to reduce the variability of a point
process when its fluctuations are greater than those of the benchmark homogeneous
Poisson, and to increase the variability for a process whose fluctuations lie below
those of the Poisson (Teich & Saleh, 1982). This outcome stands in contrast to that
for decimation, which always results in a reduction of variability, as discussed in
Sec. 11.2.2.

This tendency toward the homogeneous Poisson process can be observed to some
extent in Fig. 11.2, which displays the estimated normalized interevent-interval his-
togram following random deletion for the seven canonical point processes shown in
Fig. 5.9. The retention probabilityr = 1

4 . In particular, theheartbeat interval
histogram, which is quite narrow in Fig. 5.9 by virtue of the clocklike sequence of
events comprising the point process, is substantially broadened and displays a nearly
exponential form in Fig. 11.2. Nevertheless, examination of thecomputer and
geniculate data reveals that their features are more-or-less conserved under ran-
dom deletion. In particular, deletion highlights the phase-locked character of the
geniculate point process by increasing the relative number of interevent intervals
at large multiples of the stimulus period (see, for example, Teich et al., 1993, for a
discussion of phase locking).
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RETINA (�100)HEARTBEAT (�101)COCHLEA (�102)GENICULATE (�103)COMPUTER (�104)CORTEX (�105)SYNAPSE (�106)

RANDOMLY DELETED DATA

NORMALIZED INTEREVENT INTERVAL �=bE[� ℄NORMALIZE
DINTEREVE
NT-INTERVA
LHISTOGRA
Mbp �� �=b E[�℄�

10110010�110�2

10610410210010�210�4
Fig. 11.2 Estimated normalized interevent-interval histogram following random deletion,
p̂τ (τ/Ê[τ ]) vs. normalized interevent intervalτ/Ê[τ ], for the same seven point processes
displayed in Fig. 5.9. The retention probabilityr = 1

4
. We reduced the histogram data to a

smaller number of bins for thecortex andsynapse data sets because they had only 441 and
688 surviving intervals, respectively. Random deletion ultimately drives point processes toward
Poisson form. This can be observed to some extent in the interevent-interval histograms, most
noticeably for theheartbeat data. Nevertheless, the principal features of thecomputer
andgeniculate data largely remain. In particular, the deletion operation highlights the
phase-locked character of thegeniculate point process.

The perfectly periodic point processdN1(t), which has interevent intervalsτk = τ0

for all indicesk, provides a useful illustration for how random deletion can engender
an increase in variability (Teich & Saleh, 1982). The coefficient of variation of the
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RETINA (�100)HEARTBEAT (�101)COCHLEA (�102)GENICULATE (�103)COMPUTER (�104)CORTEX (�105)SYNAPSE (�106)

RANDOMLY DELETED DATA

NORMALIZED FREQUENCY f=bE[�℄
NORMALIZE
DESTIMATE
DSPECTRUM
b S �(f;T)=b E[�℄

10110010�110�210�310�410�5

10810610410210010�210�4
Fig. 11.3 Normalized estimated rate spectra following random deletion,Ŝλ(f, T )/Ê[λ] vs.
normalized frequencyf/Ê[λ], for the six biological point processes and one computer network
traffic trace illustrated in Fig. 5.1. The retention probabilityr = 1

4
. The fractal variability

diminishes in magnitude for each of the point processes. The counting timeT is chosen such
that 1/

√
2 < 30 T/E[τ ] <

√
2, as it is for all spectra displayed in this chapter, thereby

ensuring that the size of the Fourier-transform exceeds the number of intervals by a significant
factor (15

√
2).

intervals,Cτ =
√

Var[τ ]
/
E[τ ], is of course zero, as is the normalized variance of

the counts,F (T ), for counting timesT = nτ0 wheren is a positive integer. The
fact that both of these quantities vanish indicates the absence of randomness in this
initial point process. We now subject this process to random deletion by retaining
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RETINAHEARTBEATCOCHLEAGENICULATECOMPUTERCORTEXSYNAPSE
RANDOMLY DELETED DATANORMALIZED COUNTING TIME T=bE[� ℄ESTIMATED

NHWVb A(T)

10510410310210110010�110�2

10310210110010�110�2
Fig. 11.4 Estimated normalized Haar-wavelet variance (NHWV) following random deletion,
Â(T ) vs. normalized counting timeT/Ê[τ ], for the same seven point processes as displayed
in Fig. 5.2. The retention probabilityr = 1

4
. As in Fig. 11.3, the fractal variability diminishes

in magnitude for each of the point processes.

each event with probabilityr, independent of the other events and of the time at which
the event occurs. The resulting point processdNR(t), which belongs to the renewal
point-process family, obeys

Pr{τR = nτ0} = r (1− r)n−1

Pr{τR ≤ nτ0} = 1− (1− r)n

Pr{τR ≤ t} = 1− (1− r)int(t/τ0)

= 1− exp[ int(t/τ0) log(1− r)] , (11.14)

whereint(c) represents the integer part of the real numberc.
In the limit of large values oft/τ0 and small values ofr (signifying that only a

small fraction of the events survives), we haveint(t/τ0) ≈ t/τ0 andlog(1−r) ≈ −r,
whereupon Eq. (11.14) assumes an exponential form,

Pr{τR ≤ t} ≈ 1− exp(−tr/τ0)

pτR(t) ≈ (
1/E[τR]

)
exp

(−t/E[τR]
)
, (11.15)

whereE[τR] = τ0/r, as a result of the properties of the geometric distribution. Since
dNR(t) has an exponentially decaying interevent-interval density, and belongs to
the family of renewal point processes, it is, by definition, a homogeneous Poisson
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process. Thus, under the influence of heavy random deletion the perfectly periodic
integrate-and-reset process becomes a homogeneous Poisson process. The coefficient
of variation of the intervals,Cτ , and the normalized variance of the counts,F (T ),
grows from zero to unity, which unequivocally demonstrates that a substantial increase
in variability can be introduced by the operation of random deletion.

As indicated in Sec. 11.2.1, and implicit in the results derived above, random
deletion reduces the magnitude of the fractal variability inherent in a point process;
this operation converts an arbitrary original fractal-based point processdN1(t) into
its deleted cousindNR(t) via Eq. (11.7) and associated formulas. Figures 11.3 and
11.4 demonstrate this reduction for the rate spectra and normalized Haar-wavelet
variances, respectively, associated with the canonical data sets displayed in Figs. 5.1
and 5.2. The reduction agrees with the analytical results provided in Eqs. (11.13) and
(11.10), respectively.

Two exceptions exist to this rule, whereby random deletion does not change the
character of a point process. A renewal point process retains its renewal form under
random deletion, although it becomes a different renewal process (see Prob. 11.9).
And a doubly stochastic Poisson process remains a doubly stochastic Poisson process
(Teich & Saleh, 1982).

11.2.4 Dead-time deletion

In the presence ofdead time, calledrefractoriness in the biological literature, the
probability of event deletion depends on the history of the point process in a more
complex manner than it does for decimation. In its most general form, dead-time
deletion invokes the history all event occurrences prior to the event at hand. Treating
this general problem turns out to be quite unwieldy, however, so that it is common
to consider dead-time-deletion models that reach back only to the previousn events
(nth-order dead time). Typically,n = 1 or 2.

In the following, we consider only first-order dead time (n = 1), also known as
“one-memory dead time.” This case further divides into two types: one in which the
surviving processdNR(t) depends on the last event of the original processdN1(t)
(paralyzable dead timeor extended dead time), and one in whichdNR(t) depends
on the last event of the output processdNR(t) (nonparalyzable dead timeor nonex-
tended dead time).6 Both types of dead time belong to the more general family of
type-pdead time(Albert & Nelson, 1953; Parzen, 1962; Bharucha-Reid, 1997). An
enormous body of literature exists on dead-time effects, and Müller compiled a rather
remarkable bibliography on the topic in 1981.

We focus on nonparalyzable dead time, by far the most prevalent form encountered
in physical and biological systems. The probability of survival of an event indN1(t),

6 There is a further division, depending on whether the counter is in a “blocked” (“ordinary”), “unblocked”
(“shifted” or “free”), or “equilibrium” (“stationary”) state at the beginning of the counting duration (see, for
example, M̈uller, 1973, 1974; Libert, 1976). The various results differ minimally when the mean number
of events recorded during a sampling time is much greater than unity (Libert, 1976).

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



EVENT DELETION 237

which depends only on the time to the last event indNR(t), is specified by the so-
calledrecovery functionr(t). In the special case offixed dead time(calledabsolute
refractoriness in the biological literature),r(t) follows the form of a step function:

r(t) =
{

0 t < τf

1 t ≥ τf ,
(11.16)

whereτf is the dead-time period. The deletion of events subjected to fixed dead time
is illustrated in Fig 11.1d). More generally,relative dead time (known asrelative
refractoriness in the biological literature) occurs, whereuponr(t) assumes a more
general form. Relative dead time is also descriptively referred to assick time (Teich
& Diament, 1980). Yet another variation on the theme involvesstochastic dead time,
in which the dead time is absolute but random (see, for example, Cantor, Matin &
Teich, 1975; Teich et al., 1978).

Even with these simplifications, general results are difficult to obtain. We there-
fore further limit ourselves to a few particular cases that serve as useful models for
the kinds of dead-time effects often encountered in point processes and that prove
amenable to analysis. In particular, we consider (1) general point processes modified
by fixed nonparalyzable dead time; (2) homogeneous Poisson processes modified by
relative nonparalyzable dead time; (3) Poisson-based processes modified by relative
nonparalyzable dead time; and (4) integrate-and-reset processes modified by relative
nonparalyzable dead time.

• The imposition offixed dead timeon ageneral point processclosely resem-
bles the minimal-covering procedure used to calculate the capacity dimension
in Sec. 7.2.5 (see Fig 7.7). Indeed, the same formalism yields a general result
for the mean interevent time. For a general point process, we again make use of
Wald’s Lemma (Feller, 1971) to obtain the expected value of the time between
events in the resulting point process,

E[τR] = E2[τ1]
∫ τf

0−
G1(t) dt. (11.17)

The quantityG1(t) denotes the coincidence rate of the point processdN1(t),
and the notation0− indicates that the range of integration spans the delta
function in G1(t) at t = 0. Examples of point processes in this class have
been considered by Cantor & Teich (1975); Teich & McGill (1976); Teich &
Vannucci (1978); Vannucci & Teich (1978, 1981); Saleh et al. (1981); and
Prucnal & Teich (1983).

• We next consider thedead-time-modified homogeneous Poisson process,
which has a broad range of applicability in many fields of endeavor. The fixed-
dead-time version of this process has a long history in the annals of probability
(Morant, 1921; Palm, 1943; Jost, 1947; Parzen, 1962; DeLotto, Manfredi &
Principi, 1964; M̈uller, 1973; Cantor & Teich, 1975; M̈uller, 1981). Feller
(1948) provided an early comprehensive analysis. As a result of the absence of
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memory in the original processdN1(t), the dead-time deleted version,dNR(t),
is renewal in nature.

Following the occurrence of an event indNR(t), the effective rateµR(t) of
dNR(t) simply becomesµ1r(t). The probability of zero events occurring in
dNR(t) between an event and a later timet, which is equivalent to the survivor
function 1 − PτR(t) of dNR(t), decays as an exponential transform of the
integrated rate, as shown in Eqs. (4.26) and (4.28):

1− PτR(t) = exp
[
−µ1

∫ t

0

r(u) du

]
. (11.18)

The mean interevent time for the resulting point process is obtained from
Eq. (11.18):

E[τR] =
∫ ∞

0

tpτR(t) dt

=
∫ ∞

0

[1− PτR(t)] dt (11.19)

=
∫ ∞

0

exp
[
−µ1

∫ t

0

r(u) du

]
dt, (11.20)

where Eq. (11.19) follows from integration by parts and resembles Eq. (3.11)
for s →∞.

We define an effective dead timeτe as the difference between the mean in-
terevent intervals for the two processes,

τe ≡ E[τR]− E[τ1] = E[τR]− 1/µ1. (11.21)

Rearranging Eq. (11.21) yields the expectation of the effective rate,

E[τR] = 1/µ1 + τe = 1/E[µR]

E[µR] =
µ1

1 + µ1 τe
. (11.22)

• More generally, we examine thedead-time-modified driven Poisson process.
Suppose that the initial point processdN(t) maintains its Poisson character but
has a varying rateµ1(t), as considered by Vannucci & Teich (1978, 1981).
We assume thatµ1(t) varies slowly in comparison with the mean interevent
time of the resulting process,E[τR], and that the standard deviation ofµ1(t) is
much smaller than its mean. The instantaneous rate then follows the form of
Eq. (11.22) without the expectation,

µR(t) =
µ1(t)

1 + µ1(t)τe
. (11.23)
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To simplify the ensuing algebra, we define two functions,

x(t) ≡ 1 + µ1(t) τe

y(t) ≡ x(t)− E[x]
E[x] ,

(11.24)

whereupon

µR(t) τe =
µ1(t) τe

1 + µ1(t) τe

= 1− 1
1 + µ1(t) τe

= 1− 1
x(t)

= 1− 1
x(t)− E[x] + E[x]

= 1− 1
E[x]

1
1 + y(t)

= 1− 1
E[x]

∞∑
n=0

[−y(t)]n. (11.25)

Theconvergence of the power series in Eq. (11.25) follows from the assumed
small value ofy(t), which, in turn, derives from the small degree of relative
fluctuations inµ1(t). Retaining terms to second order in this perturbation
analysis leads to

µR(t) τe ≈ 1− 1
E[x]

[
1− y(t) + y2(t)

]

= 1− 1
E[x]

+
x(t)− E[x]

E2[x]
−

{
x(t)− E[x]

}2

E3[x]

µR(t) ≈ E[µ1]
1 + E[µ1] τe

+
µ1(t)− E[µ1](
1 + E[µ1] τe

)2 − τe

{
µ1(t)− E[µ1]

}2

(
1 + E[µ1] τe

)3 .

(11.26)

Finally, forming the expectation of Eq. (11.26) leads to a second-order approx-
imation for the mean rate,

E[µR] ≈ E[µ1]
1 + E[µ1] τe

− Var[µ1] τe(
1 + E[µ1] τe

)3 . (11.27)

More exact results are available for the specific case whenr(t) takes the form
of a delayed exponential function (Lowen, 1996).
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In preparation for computing the autocovariance, we rearrange Eq. (11.27) to
provide

µR−E[µR] ≈ µ1(t)− E[µ1](
1 + E[µ1] τe

)2 − τe

{
µ1(t)− E[µ1]

}2 −Var[µ1](
1 + E[µ1] τe

)3 . (11.28)

The second fraction in Eq. (11.28) becomes insignificant when calculating the
autocovariance, however, since it only appears in third- and higher-order terms;
we thus obtain (Lowen, 1996)

E
[{

µR(s)− E[µR]
}{

µR(s + t)− E[µR]
}]

≈ E

{
µ1(s)− E[µ1](
1 + E[µ1] τe

)2 ·
µ1(s + t)− E[µ1](

1 + E[µ1] τe

)2

}

RµR(t)− E2[µR] ≈ (
E[µR]/E[µ1]

)4 {
Rµ1(t)− E2[µ1]

}
. (11.29)

Pursuing the formalism provided in Eq. (11.7) then leads to

SNR(f) ≈ (
E[µR]/E[µ1]

)4
SN1(f)

=
(
E[µR]/E[µ1]

)4 E[µ1] (f/fS1)−α

= E[µR] (f/fSR)−α, (11.30)

with fractal onset frequencyfSR = fS1(E[µR]/E[µ1])3/α. This result contrasts
with that provided just after Eq. (11.7) for random deletion, which isfSR =
fS1(E[µR]/E[µ1])1/α. The distinction arises because dead time preferentially
deletes closely spaced intervals relative to sparsely populated ones. This serves
to reduce high rates more than low rates and thereby reduces the fluctuations
in the rate. This, in turn, leads to a more regular process than would emerge
by deletion of the same number of events without regard to the event timings.
Hence, given the same initial point process, dead-time-modified processes tend
to have lower fractal onset frequencies (and higher fractal onset times) than
randomly deleted processes of the same rate. The relationships in Eq. (5.45)
remain valid since the cutoff timeTA (as well asTF , tG, andTR for α < 1)
increases by the inverse factor, namely(E[µR]/(E[µ1])−3/α.

Dead time effects are principally short term while fractal effects are most im-
portant in the long term, so they conveniently decouple, at least for the doubly
stochastic Poisson process. We can readily incorporate the two effects into
a single formula by using the dead-time factor(1 + E[µ]τe)3 in conjunction
with the fractal term, and adding in the dead-time result. As an example, let
A1(T ) denote the normalized Haar-wavelet variance for a dead-time-modified
homogeneous Poisson process, andA2(T ) denote the normalized Haar-wavelet
variance for a fractal doubly stochastic Poisson process without dead time. The
overall normalized Haar-wavelet varianceA3(T ) then becomes (Lowen, 1996)

A3(T ) = A1(T ) + (1 + E[µ]τe)3 [A2(T )− 1]. (11.31)
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• Finally we turn to thedead-time-modified integrate-and-reset process. For
a constant rateµ1, we again haveµR(t) = µ1r(t), but in this case Eq. (4.35)
provides

∫ τR

0

µR(t) dt = µ1

∫ τR

0

r(t) dt = 1
∫ τR

0

r(t) dt = τ1

r(τR) = dτ1/dτR. (11.32)

Following the procedure used earlier, but now for the integrate-and-reset pro-
cess, we obtain

µR(t) ≈ E[µR] +
dµR

dµ1

{
µ1(t)− E[µ1]

}2

RµR(t)− E2[µR] ≈
(

dµR

dµ1

)2{
Rµ1(t)− E2[µ1]

}
. (11.33)

We calculate the derivative in Eq. (11.33) with the help of Eq. (11.32), which
gives rise to

dµR

dµ1
=

d(1/τR)
dµ1

= −τ−2
R

dτR

dµ1
= −τ−2

R

[
dµ1

dτR

]−1

= −τ−2
R

[
d(1/τ1)

dτR

]−1

= − 1
τ2
R

[
−r(τR)

τ2
1

]−1

=
(
µR/µ1

)2
r−1(τR). (11.34)

Finally, combining Eqs. (11.33) and (11.34) yields

RµR(t)− E2[µR] ≈ (
E[µR]/E[µ1]

)4
r−2

(
E[τR]

) {
Rµ1(t)− E2[µ1]

}
.

(11.35)
In particular, for fixed dead time, as specified in Eq. (11.16), we haver(τR) = 1
for all possibleτR, which yields results identical to those provided in Eq. (11.29),
and thus also to those given in Eq. (11.30). In general, for integrate-and-reset
deletion processes the changes in fractal onset times and frequencies depend
on the form ofr(t).

11.3 DISPLACEMENT

The displacementoperation, sometimes calledtranslation, signifies a shifting of
the individual events of a point process, typically by a random amount (Cox, 1963).
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Random jitter results in a loss of phase coherence, so it can mask features of interest
in the unmodified point process. Although the magnitude of the displacement can in
principle be made to depend on a variety of properties of the point process, such as
its local mean rate or some complex function of its history (Harris, 1971), constructs
of this kind have limited usefulness and are difficult to analyze. Rather, we focus on
two simple approaches to displacement, based on the intervals between events and
on the events themselves, respectively.

11.3.1 Interval displacement

In the displaced-interval approach, each interevent interval is multiplied by a random
quantity that is close to unity, such as

τkR = τk1

[
1 + σNk(0, 1)

]
(11.36)

whereσ is the dimensionless relative scale of the displacement (akin to a standard
deviation) and{Nk(0, 1)} is a sequence of independent, zero-mean, unity-variance
Gaussian random variables (Thurner et al., 1997). Typically we chooseσ ¿ 1 so
that, with rare exception,τkR > 0.

Rather than relying on multiplication, we could instead add a random value to each
interevent interval, for example via

τkR = τk1 + σNk(0, 1)E[τk1]. (11.37)

We have not found the additive approach to be useful, however, because it either
requires very small values ofσ (in which case large values ofτkR experience little
change) or it leads to many negative values ofτk1.

For displacement, as specified in either Eq. (11.36) or (11.37), we can rectify the
problem of negativeτk1 in a number of ways; we specify two. The first approach
involves specifying a minimum interevent interval, and replacing all values inferior
to it with that minimum value. Alternatively, we can reorder the eventstkR in the
resulting point process so that the intervals all become positive, but this approach
introduces additional complexity. For any method, displacing the intervals yields a
new point process that precisely preserves the number of interevent intervals in the
original process, but not its duration.

11.3.2 Event-time displacement

In the displaced event-time approach, we add a random quantity to each event time
so that, for example,

tkR = tk1 + σNk(0, 1) E[τk1], (11.38)

where the definitions ofσ and{Nk(0, 1)} are given in conjunction with Eqs. (11.36)
and (11.37). Note that this differs from Eq. (11.37). Multiplication by a random value,
as formulated in Eq. (11.36), is not viable in this case since it leads to increasingly
larger displacements ast increases. Again, we can setPr{τk1 < σE[τk1]} ¿ 1 so
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a)ORIGINAL POINT-PROCESS REALIZATIONdN1(t)

τ1 τ2 τ3 τ4 τ5 τ6¾ -¾ -¾ -

-
6 6 6 6 6 6 6

t1 t2 t3 t4 t5 t6 t7
TIME t

? ? ?? ? ? ?

-
6 6 66 6 6 6

t′1 t′2 t′3t′4 t′5 t′6 t′7
t′′1 t′′2 t′′3 t′′4 t′′5 t′′6 t′′7

TIME t

τ ′1 τ ′2 τ ′3 τ ′4 τ ′5 τ ′6¾ -¾ -

b) DISPLACED POINT-PROCESS REALIZATIONdNR(t)

Fig. 11.5 Original and displaced point-process realizations. (a) An original point process
realizationdN1(t) comprises seven event times{tk} and six concomitant interevent intervals
{τk}. A random displacement of the event times{tk} in the original realization shown in a)
yields a new set of event times{t′k}; after reordering in increasing temporal order, these become
the event times{t′′k} of the displaced realization shown in b). The six interevent intervals{τ ′k}
of this displaced realization derive from the relationτ ′k = t′′k+1− t′′k . In general the start times
differ (t′1 6= t1), in contrast to the outcome for interval shuffling (Sec. 11.5).

thatτkR > 0 with only rare exception, and then set a minimum interevent interval;
sorttkR into increasing order; or use a combination of these methods to ensure that
τkR does not assume negative values.

A schematic illustration of displacing the event times of a point process appears in
Fig. 11.5. Event displacement yields a new point process that exactly preserves the
number of interevent intervals in the original process, and also closely preserves its
duration. In general, both methods (with reordering, if required) destroy whatever
structure might have been present in the original point processdN1(t) at time scales
smaller thanσE[τk1], replacing it with (locally) homogeneous-Poisson behavior at
those scales. To understand how this comes about, consider a fractal-Gaussian-
process-driven integrate-and-reset processdN1(t). Now apply the transformation
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RETINA (�100)HEARTBEAT (�101)COCHLEA (�102)GENICULATE (�103)COMPUTER (�104)CORTEX (�105)SYNAPSE (�106)

DISPLACED DATA

NORMALIZED INTEREVENT INTERVAL �=bE[� ℄NORMALIZE
DINTEREVE
NT-INTERVA
LHISTOGRA
Mbp �� �=b E[�℄�

10210110010�110�210�3

10610410210010�210�4
Fig. 11.6 Estimated normalized interevent-interval histogram following random displace-
ment,p̂τ (τ/Ê[τ ]) vs. normalized interevent intervalτ/Ê[τ ], for the same seven point processes
displayed in Fig. 5.9. We add a random value to each event time in the data set. These values
are drawn from a zero-mean Gaussian-distributed distribution with a standard deviation equal
to ten times the mean interevent interval of the data set under study. All random variables are
independent of each other. We reduced the histogram data to the same number of bins (namely
100) for all data sets. Most of the curves assume a form that is essentially exponential, con-
firming that the structure in the original histograms reflects the existence of particular interval
orderings over short time scales.

of Eq. (11.38) with a large value ofσ, such as 10; each event then experiences a
random shift of the order of10E[τk1]. In particular, the integrate-and-reset character
of the point process does not survive in the resulting processdNR(t). However,
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RETINA (�100)HEARTBEAT (�101)COCHLEA (�102)GENICULATE (�103)COMPUTER (�104)CORTEX (�105)SYNAPSE (�106)

DISPLACED DATA

NORMALIZED FREQUENCY f=bE[�℄
NORMALIZE
DESTIMATE
DSPECTRUM
b S �(f;T)=b E[�℄

10110010�110�210�310�410�5

10810610410210010�210�4
Fig. 11.7 Normalized estimated spectra following random displacement,Ŝλ(f, T )/Ê[λ]

vs. normalized frequencyf/Ê[λ], for the six biological point processes and one computer
network traffic trace illustrated in Fig. 5.1. We add a random value to each event time in the
data set. These values are drawn from a zero-mean Gaussian-distributed distribution with a
standard deviation equal to ten times the mean interevent interval of the data set under study.
All random variables are independent of each other. This operation eliminates all structure at
high frequencies for all of the point processes, whereas the fractal variability at low frequencies
remains intact.

fractal behavior, and indeed all long-term fluctuations, suffer little change so that the
statistics ofdNR(t) closely resemble those ofdN1(t) over time scales significantly
greater than10E[τk1].
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RETINAHEARTBEATCOCHLEAGENICULATECOMPUTERCORTEXSYNAPSE
DISPLACED DATANORMALIZED COUNTING TIME T=bE[� ℄ESTIMATED

NHWVb A(T)

10510410310210110010�110�2

10310210110010�110�2
Fig. 11.8 Estimated normalized Haar-wavelet variance (NHWV) following random dis-
placement,̂A(T ) vs. normalized counting timeT/Ê[τ ], for the same seven point processes as
displayed in Fig. 5.2. We add a random value to each event time in the data set. The values
are drawn from a zero-mean Gaussian-distributed distribution with a standard deviation equal
to ten times the mean interevent interval of the data set under study. All random variables
are independent of each other. This operation eradicates all structure at small values of the
normalized counting time for all of the point processes, whereas the fractal variability at large
values of the normalized counting time remains intact.

We now proceed to establish the Poisson character ofdNR(t) over small times
scales. Consider a large numbern of adjacent counting intervals of short durationT ,
such thatnT/10E[τk1] ¿ 1. The displacements, which greatly exceed the duration
of the counting intervalsnT , ensure that the resulting countsZk(T ) are independent
and identically distributed, given the same overall local rate. In the limit asT → 0
with nT fixed, the countsZk(T ) approach independent Bernoulli random variables
with identical properties. This satisfies Eqs. (4.1) and (4.2), indicating that the point
processdNR(t) over this intervalnT becomes identical to a homogeneous Poisson
process.

Under these conditions, the interevent-interval histogram approaches an exponen-
tial form. The results presented in Fig. 11.6 are, indeed, close to exponential. This is
not unexpected since the events are shifted by Gaussian random numbers with zero
mean and standard deviations equal to ten times the mean interevent interval. Lo-
cally, then, the process is nearly Poisson. The aggregate displaced interevent-interval
histogram should then become the original histogram smeared by an exponential. If
the rate remains relatively constant, as it is for the lower four data sets displayed in
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Fig. 11.6, the smearing process obliterates all traces of the original interevent-interval
histogram, leaving essentially a pure exponential in its place. On the other hand, if
the rate exhibits large variations, some regions of the point processes will be dom-
inated by short intervals while other regions will be dominated by long ones. The
interevent-interval histogram will then deviate from an exponential form, especially
for the larger intervals. This occurs in the upper three data sets displayed in Fig. 11.6
because of the wide variation in their rates. The deviation from exponential form is
particularly apparent for thecomputer data because it has nearly a thousand times
as many intervals as thesynapse andcortex data, thereby making the effect more
apparent.

In Figs. 11.7 and 11.8 we illustrate the effects of event-time displacement, im-
plemented according to the prescription provided in Fig. 11.5, on the spectra and
normalized Haar-wavelet variances of the canonical set of point processes shown
in Figs. 5.1 and 5.2. The fractal behavior at low frequencies (large values of the
normalized counting time) remains intact; however, all structure at high frequencies
(small values of the normalized counting time) is eliminated and the process becomes
Poisson-like, as evidenced by the fact thatÂ(T ) = 1 in this range.

11.4 INTERVAL TRANSFORMATION

We turn now to interval transformation, in which the relative ordering of the interevent
intervals remains unchanged but their overall probability distribution is modified.
This operation creates a surrogate data set testing the hypothesis that behavior in a
particular measure derives from the interevent-interval distribution.

Figure 11.9 illustrates the procedure of interval transformation. This procedure
maintains the ordering of the set of interevent intervals{τn}, but each interval is
resized by drawing it from an arbitrary probability distribution. Like displacement,
interval transformation yields a new point process that exactly preserves the number
of interevent intervals in the original process, and also closely preserves its duration.
However, the particular original point process realization illustrated in Fig. 11.9 has
interevent intervals that exhibit a relatively low coefficient of variation; the interval-
transformed realization has a greater proportion of smaller and larger intervals at the
expense of values near the mean. The nature of the point process has changed. A
simple method for carrying out this transformation on a set ofM interevent intervals
includes the following five steps7 (steps 3 and 4 can precede steps 1 and 2 to save
memory):

7 Alternatively, one could construct a monotonically increasing function and apply it to each interevent
intervalτn in the original realization to generate the corresponding interval in the new realization, choosing
a form for the function that yields the correct empirical fit for the distribution of{τ ′n}. However, aside
from requiring intervention tailored to each data set, this procedure does not admit more than one possible
realization. Randomness is not present in the generated realization in this case.
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1. GenerateM independent random numbers with the desired distribution, and
call this array{τ ′n}.

2. Sort{τ ′n} into ascending order.

3. Generate an auxiliary array of integers in ascending order, ranging from 1 to
M , and call this array{kn}. Thus,kn = n at this point.

4. Sort the original array{τn} into ascending order, and perform the same oper-
ations on the auxiliary array{kn}.

5. Sort the auxiliary array{kn} back into ascending order, and perform the same
operations on the generated array{τ ′n}.

a) ORIGINAL POINT PROCESS REALIZATIONdN1(t)

-
6 6 6 6 6 6 6

t1 t2 t3 t4 t5 t6 t7
TIME t

τ1 τ2 τ3 τ4 τ5 τ6¾ -¾ -¾ -

? ? ? ? ? ?

τ ′1 τ ′2 τ ′4 τ ′5 τ ′6¾ -¾ -

-
66 66 6 6 6

t′1 t′2 t′3, t′4 t′5 t′6 t′7
TIME t

b) INTERVAL-TRANSFORMED POINT PROCESS
REALIZATION dNR(t)

Fig. 11.9 Interval-transformed point process. (a) The original point-process realization has
seven event times{tn} and therefore six interevent intervals{τn}. We replace each interevent
intervalτn with a new random variable drawn from a predetermined distribution (for example,
exponential), and preserve the relative ordering of the intervals. This yields the interevent
intervals{τ ′n} of the interval-transformed realization (b). As with the interval-transformed
realization, the two realizations share the same start time (t′1 = t1). We then employ the
relation τ ′n = t′n+1 − t′n to yield the seven event times{t′n} of the interval-transformed
realization. The label for the interevent intervalτ ′3 has been omitted because of lack of space.
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11.4.1 Interval normalization

Distribution transformation has long been applied to interval and count data because
it confers a number of benefits8 (Tukey, 1957; Kendall & Stuart, 1966). The principal
goals of such transformations are generally to stabilize the variance so that conven-
tional analysis measures can be used (Prucnal & Teich, 1980); convert nonadditive
noise into additive form so that well-established detection/estimation techniques ap-
ply (Prucnal & Saleh, 1981); and to cast the distribution into a symmetrical form for
ease of calculation. A transformation suitable for effecting one of these features often
turns out to effect the others as well (Tukey, 1957). Most often, the transformation
is to a Gaussian distribution by virtue of the extensive body of available results; it is
then called anormalizing transformation.

11.4.2 Interval exponentialization

We now consider the effects of transforming the intervals to an exponential distri-
bution, which we termexponentialization. In Figs. 11.10 and 11.11, we illustrate
the consequences of carrying out this operation on the spectra and normalized Haar-
wavelet variances of the canonical set of point processes shown in Figs. 5.1 and
5.2. (We do not display exponentialized interevent-interval histograms since they are
exponential by construction.)

To understand the role played by exponentialization, we consider the fractal-
Gaussian-process-driven Poisson process described in Sec. 6.3.3. When the coef-
ficient of variation of the rate is small in comparison with unity (Cµ ¿ 1), the rate
does not depart significantly from its mean value; in particular, it remains nearly con-
stant over times corresponding to a few interevent intervals. Under these conditions,
as shown in Eq. (4.33), the interevent-interval density for this process closely follows
an exponential form,9 modulated only minimally by the range of rate values (compare
with the argument in Sec. 11.3.2). The sequence of events then closely resembles
a homogeneous Poisson process over those time scales. The interval distribution
therefore does not contribute to the fractal characteristics of this process; rather, this
behavior arises from the ordering of the intervals. Hence, one method for testing
whether the interval distribution induces fractal behavior in a point process involves

8 Approximate normalizing transformations do, in fact, exist for nonparalyzable and paralyzable dead-
time-modified Poisson counting systems (Teich, 1985).
9 The sequence of action potentials generated in primary afferent auditory nerve fibers, either firing spon-
taneously or stimulated by high-frequency tones, is well described by a dead-time-modified form of this
point process (Teich et al., 1990; Lowen & Teich, 1997). The observation of an interevent-interval density
described by a delayed exponential, while ignoring other statistics of the point process, has often led re-
searchers to the (improper) conclusion that the action potentials follow a dead-time-modified homogeneous
Poisson process (see, for example, Kiang, Watanabe, Thomas & Clark, 1965, Chapter 8); for a discus-
sion of this issue, see Teich & Khanna (1985); Teich (1992); Lowen & Teich (1992a); Teich & Lowen
(1994). Indeed, any number of distinctly non-Poisson point processes can be constructed with exponential
interevent-interval densities (see, for example, Moran, 1967; Lawrance, 1972; Glass & Mackey, 1988).

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



250 OPERATIONS

RETINA (�100)HEARTBEAT (�101)COCHLEA (�102)GENICULATE (�103)COMPUTER (�104)CORTEX (�105)SYNAPSE (�106)

EXPONENTIALIZED DATA

NORMALIZED FREQUENCY f=bE[�℄
NORMALIZE
DESTIMATE
DSPECTRUM
b S �(f;T)=b E[�℄

10110010�110�210�310�410�5

10810610410210010�210�4
Fig. 11.10 Normalized estimated spectrum after exponentialization,Ŝλ(f, T )/Ê[λ] vs. nor-
malized frequencyf/Ê[λ], for the six biological point processes and one computer network
traffic trace illustrated in Fig. 5.1. There is a substantial reduction of structure at high fre-
quencies for all of the point processes while the fractal variability at low frequencies remains
essentially intact or, in the case of theheartbeat point process, is enhanced.

replacing the intervals of the original realization with ones having an exponential
form and observing whether the fractal characteristics change.

By way of example, consider a point-process realization exhibiting fractal behav-
ior that depends on both the relative orderingand the distribution of the interevent
intervals; the fractal-lognormal-noise-driven Poisson process described in Sec. 6.5
behaves in this way. Exponentialized realizations for this process yield results in
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RETINAHEARTBEATCOCHLEAGENICULATECOMPUTERCORTEXSYNAPSE
EXPONENTIALIZED DATANORMALIZED COUNTING TIME T=bE[� ℄ESTIMATED

NHWVb A(T)

10510410310210110010�110�2

10310210110010�110�2
Fig. 11.11 Estimated normalized Haar-wavelet variance (NHWV) following exponential-
ization, Â(T ) vs. normalized counting timeT/Ê[τ ], for the same seven point processes as
displayed in Fig. 5.2. Structure at small values of the normalized counting time is reduced
for all of the point processes, whereas the fractal variability at large values of the normal-
ized counting time remains essentially intact or, in the case of theheartbeat point process,
increases.

substantial agreement with each other, but with characteristics that differ from those
of the original realization, thereby demonstrating that the distribution of the interevent
intervals plays a role in the manifestation of fractal behavior in this process. That is
not to say, however, that this is a fractal point process; the fact that changing the in-
terval distribution changes the fractal characteristics of a point process does not mean
that it is a fractal object. We have, in fact, definitively shown in Fig. 5.11 that the
synapse data, which are well-described by a fractal-lognormal-noise-driven Poisson
process, are characterized by a fractal-rate point process.

The exponentialized data displayed in Figs. 11.10 and 11.11 are, for the most
part, devoid of the sharp spectral components and Haar-wavelet-variance oscillations
evident in the original data.10 However, the power-law behavior of the curves remains
essentially intact in all cases, demonstrating that the fractal behavior of all seven point
processes arises principally from the relative ordering of the intervals and not from
the distribution of the interevent intervals themselves. Behavior of this kind is the
hallmark of a fractal-rate point process.

10 The consequences of event-time displacement are similar (see Figs. 11.7 and 11.8). Both are associated
with a jittering of the event times, which results in a concomitant loss of phase coherence.
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11.5 INTERVAL SHUFFLING

Interval shuffling provides a complementary method for introducing additional ran-
domness into a point process. The shuffling operation randomly reorders the set of
interevent intervals{τn}, thereby destroying any correlations or dependencies that
might have existed among them.

Figure 11.12 illustrates how to implement the shuffling operation. The original
point process depicted in (a) happens to have events clustered towards the left, cor-
responding to a rate that effectively decreases with time. The shuffled version in
(b) exhibits no such global behavior. Although any possible rearrangement of the
original sequence{τn} can occur in principle, those with long-term structure, such

a) ORIGINAL POINT PROCESS REALIZATIONdN1(t)

-
6 6 6 6 6 6 6

t1 t2 t3 t4 t5 t6 t7
TIME t

τ1 τ2 τ3 τ4 τ5 τ6¾ -¾ -¾ -

τ ′1 τ ′2 τ ′3 τ ′4 τ ′5 τ ′6¾ - ¾ -¾ -
?? ??? ?

b) SHUFFLED POINT PROCESS REALIZATIONdNR(t)

-
6 6 6 6 6 6 6

t′1 t′2 t′3 t′4 t′5 t′6 t′7
TIME t

Fig. 11.12 Shuffled point process. (a) The original point process realization has seven event
times{tn} and therefore six interevent intervals{τn}. (b) Randomly reordering the interevent
intervals{τn} of the original realization yields the interevent intervals{τ ′n} of the shuffled
realization. For the particular shuffling illustrated, we haveτ ′1 = τ2, τ ′2 = τ5, τ ′3 = τ1,
τ ′4 = τ4, τ ′5 = τ6, andτ ′6 = τ3. Assuming the same start time (t′1 = t1) and employing the
relationτ ′n = t′n+1 − t′n yields the seven event times{t′n} of the shuffled realization.
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RETINA (�100)HEARTBEAT (�101)COCHLEA (�102)GENICULATE (�103)COMPUTER (�104)CORTEX (�105)SYNAPSE (�106)

SHUFFLED DATA

NORMALIZED FREQUENCY f=bE[�℄
NORMALIZE
DESTIMATE
DSPECTRUM
b S �(f;T)=b E[�℄

10110010�110�210�310�410�5

10810610410210010�210�4
Fig. 11.13 Normalized estimated spectrum after random shuffling,Ŝλ(f, T )/Ê[λ] vs. nor-
malized frequencyf/Ê[λ], for the six biological point processes and one computer network
traffic trace illustrated in Fig. 5.1. The curves are flat for low frequencies, indicating that no
vestiges of fractal behavior remain in the shuffled processes.

as a decreasing rate or fractal fluctuations in the sizes of the intervals, prove much
less likely. The end result resembles a renewal point process.

Rather than generating new point processes, shuffling typically finds use as a non-
parametric method for testing a hypothesis in a point-process realization (Schiff &
Chang, 1992; Theiler et al., 1992; Theiler & Prichard, 1996; Schreiber & Schmitz,
1996). A series of independent shufflings of such a realization yields a set of sta-
tistically independent reorderings of the same set of interevent intervals{τn}, and
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RETINAHEARTBEATCOCHLEAGENICULATECOMPUTERCORTEXSYNAPSE SHUFFLED DATA

NORMALIZED COUNTING TIME T=bE[� ℄ESTIMATED
NHWVb A(T)

10510410310210110010�110�2

10310210110010�110�2
Fig. 11.14 Estimated normalized Haar-wavelet variance (NHWV) following random shuf-
fling, Â(T ) vs. normalized counting timeT/Ê[τ ], for the same seven point processes as dis-
played in Fig. 5.2. The flattening of all of the curves indicates the absence of fractal behavior
in all of the shuffled processes.

reveal the likelihood that a particular feature of the realization occurred by chance.
For example, the rate spectrumSλ(f, T ) can be used to test for nonrenewal behav-
ior. If a number of independent shufflings yield estimates of the spectrum that are in
substantial agreement with each other, but differ from that of the original unshuffled
process, then the original point process likely has dependent interevent intervals and
therefore does not derive from a renewal point process.

Like displacement, interval shuffling destroys any structure present in the original
point processdN1(t), but in this case over time scales smaller than the shuffling,
replacing it with (locally) renewal behavior at those scales. In contrast to interval
transformation, the relative ordering of the interevent intervals is destroyed but the
overall interval distribution is maintained. Indeed, the two operations are comple-
mentary, each preserving what the other destroys. The shuffling operation tests the
hypothesis that behavior in a particular measure derives from the ordering of the
interevent intervals.

In Figs. 11.13 and 11.14 we illustrate the effects of random shuffling on the spectra
and normalized Haar-wavelet variances of the canonical set of point processes shown
in Figs. 5.1 and 5.2. (We do not display shuffled interevent-interval histograms
since they are identical to the original histograms.) The results are dramatic. The
shuffling eliminates all vestiges of fractal behavior in all of the processes; it results
in a flattening of all curves for both measures. The surrogates considered previously,
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random deletion (Figs. 11.3 and 11.4), event-time displacement (Figs. 11.7 and 11.8),
and exponentialization (Figs. 11.10 and 11.11), behave quite differently.

However, shuffling an interval-exponentialized realization, or exponentializing a
shuffled realization, essentially yields a homogeneous Poisson process (Prob. 11.1).

11.5.1 Block shuffling

Finally, we mention two variations on the theme of shuffling. The first variation,
known asblock shuffling, consists of shuffling intervals within sections of a realiza-
tion, while keeping intervals from different sections from commingling. For example,
one can divide a realization into blocks ofk interevent intervals and shuffle the inter-
vals within each block separately. Or, one can divide the realization into contiguous,
nonoverlapping periods of durationT and separately shuffle the intervals that begin
in each period. These block-shuffling methods preserve fractal and other long-term
characteristics over time scales larger than the average block time, while destroying
all dependencies over shorter time scales.

11.5.2 Bootstrap method

The second variation selects intervals with replacement, rather than rearranging the
intervals; in this case, some of the interevent intervals of the original realization
may not appear in the shuffled version, while others can have multiple copies. This
approach, called thebootstrap method, enjoys some mathematical advantages since
it generates renewal processes based on an interevent-interval distribution estimated
from the intervals at hand (Efron, 1982; Efron & Tibshirani, 1993). Nevertheless,
shuffling without replacement proves superior in some cases, since the set of intervals
remains identical. In particular, the mean rate, the total duration of the realization,
and all first-order statistics of the interevent intervals do not change.

11.5.3 Identification of fractal-based point processes

With the collection of surrogate-data techniques in hand, we revisit the issue of fractal-
based point-process identification. Associating a model with an observed point pro-
cess is often useful for elucidating mechanisms that underlie the data. We took a
first step in this direction in Sec. 5.5.4 (see also Probs. 5.2, 5.3, 5.4, and 5.5) where
we showed the possibility of discriminating between fractal and fractal-rate point
processes.

What information about the nature of the seven canonical point processes portrayed
in Figs. 5.1 and 5.2 might be provided to us by the surrogate-data curves exhibited in
Secs. 11.3–11.5?

Fractal behavior manifests itself at low frequencies and large normalized counting
times. The displaced surrogates shown in Figs. 11.7 and 11.8 reveal that the fractal
behavior does not arise from the details of the local occurrence times for any of the
point processes. The exponentialized surrogates presented in Figs. 11.10 and 11.11
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inform us further that the fractal behavior is not a result of the particular form of the
interevent-interval distribution in any of the point processes.

And, finally, the shuffled surrogates displayed in Figs. 11.13 and 11.14 assure us
that, for all of the point processes, the fractal behavior is associated with the ordering
of the intervals. The large counting-time asymptotes ofÂ(T ) in Fig. 11.14 reveal the
clustering characteristics inherent in the interevent-interval distribution, as understood
from Eq. (4.18).

We conclude that all seven data sets represent fractal-rate point processes, and not
fractal point processes. This conclusion accords with that reached by examining the
generalized dimensionsDq of these point processes (see Prob. 5.5). We revisit the
issue of fractal-based point-process identification in Secs. 12.1 and 13.6.

11.6 SUPERPOSITION

The superpositionNR(t) of a set ofM counting processes,N1(t) . . . NM (t), is
formed from their addition. In terms of the point-process formalism,dNR(t) includes
every event in all of the component point processesdNk(t), as illustrated in Fig. 11.15.

M INITIAL POINT PROCESSESdNn(t)

-
6 6

-
6 66 6

-
6 6 6

-
6 6

SUPERPOSEDPOINT PROCESSdNR(t)

-
66 6 66 6 6 6 6 6 6

TIME t

Fig. 11.15 The superposition ofM point processesdNn(t) leads to a process comprising
all of the events of the constituent processes. The rate of the superposed process equals the sum
of the rates of the constituent point processes, and thus exceeds each of the individual rates.
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We therefore have

NR(t) =
M∑

k=1

Nk(t)

dNR(t) =
M∑

k=1

dNk(t).

(11.39)

Palm11 (1943) appears to have been the first to examine the superposition of point
processes; Çinlar (1972) studied this operation extensively.

In broad terms, the superposition of identical fractal and fractal-rate point processes
yields results that resemble those for event deletion, in that the characteristic times
of the process change but the fractal exponent remains the same.

The most fruitful mathematical approach for examining this problem appears to
use the coincidence rate of the resulting point processdNR(t). We begin with the
definition of this quantity fordNR(t), as presented in Eqs. (3.48) and (3.49):

GR(t) ≡ lim
ε→0

ε−2 Pr{NR(s + ε)−NR(s) > 0

andNR(s + t + ε)−NR(s + t) > 0}

= E
[
dNR(s)

ds

dNR(s + t)
ds

]

= E

[
M∑

m=1

dNm(s)
ds

M∑
n=1

dNn(s + t)
ds

]

=
M∑

m=1

M∑
n=1

E
[
dNm(s)

ds

dNn(s + t)
ds

]

=
M∑

m=1

E
[
dNm(s)

ds

dNm(s + t)
ds

]

+
M∑

m=1

∑

n 6=m

E
[
dNm(s)

ds

dNn(s + t)
ds

]

=
M∑

m=1

E
[
dNm(s)

ds

dNm(s + t)
ds

]

+
M∑

m=1

∑

n 6=m

E
[
dNm(s)

ds

]
E
[
dNn(s + t)

ds

]
(11.40)

=
M∑

m=1

Gm(t) +
M∑

m=1

∑

n6=m

E[µm] E[µn]

11 A photograph of Palm appears at the beginning of Chapter 13.
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=
M∑

m=1

{
Gm(t)− E2[µm]

}
+

M∑
m=1

M∑
n=1

E[µm] E[µn]

=
M∑

m=1

{
Gm(t)− E2[µm]

}
+ E2[µR], (11.41)

where the independence of theM point processes yields Eq. (11.40) and the last step
leading to Eq. (11.41) results from the fact that the sum of the rates is equal to the
rate of the sum. The second-order properties of the superposed processdNR(t) are
simply given by the sum of those for the constituent processes. Equation (11.41)
simplifies for constituent processes with identical statistics, whereupon

GR(t) = MG1(t) + E2[µR] (1− 1/M). (11.42)

Turning now to the frequency domain, and considering point processes that have
identical fractal characteristics, we have

SR(f) = MS1(f) + E2[µR] (1− 1/M) δ(f)
= M

{
E2[µ1] δ(f) + E[µ1]

[
1 + (f/fS1)−α

]}

+ E2[µR] (1− 1/M) δ(f)
= E2[µR] δ(f) + E[µR]

[
1 + (f/fS1)−α

]
, (11.43)

which differs fromS1(f) only in the mean rate. In particular, fractal onset times
and frequencies remain unchanged under point-process superposition, as do fractal
exponents.

11.6.1 Superposition of doubly stochastic Poisson point processes

In general, superposition changes the nature of a point process (Palm, 1943). Doubly
stochastic Poisson processes provide the sole exception; superposingM identical
processes in this class yields a new point process that differs from the originals only
in that its rate is a factor ofM larger. Indeed, for a set of arbitrary point processes
dN1(t), dN2(t), . . ., asM increasesdNR(t) tends towards a doubly stochastic point
process with a rate process identical to that of the constituent processes (Çinlar, 1972;
Cox & Isham, 1980).

The homogeneous Poisson point process forms a special case. The superposition
of this processdN1(t), and a fractal-rate doubly stochastic Poisson processesdN2(t),
becomes a different doubly stochastic Poisson processesdNR(t), which is closely
related todN2(t). The resulting processdNR(t)shares fractal exponents withdN2(t),
and differs only in its fractal onset times and frequencies.

Setting terms in the spectra ofdN2(t) anddNR(t) equal, Eq. (5.44a) yields

(E[µ1] + E[µ2]) (f/fSR)−α = E[µ2] (f/fS2)−α

(fSR/fS2)α =
E[µ2]

E[µ1] + E[µ2]
. (11.44)
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Straightforward application of Eq. (5.45) then yields

(TF2/TFR)α = (TA2/TAR)α = (TR2/TRR)α =
E[µ2]

E[µ1] + E[µ2]
, (11.45)

andtGR = tG2.
More generally, consider the superposition of a number of independent, identical

fractal-based point processes with aggregate rateE[µ2], and a number of independent
point processes lacking long-term correlations with aggregate rateE[µ1]. The former
converge to a fractal-based doubly stochastic Poisson point process whereas the latter
converge to a homogeneous Poisson point process. Together, the superposition yields
results similar to those of Eqs. (11.44) and (11.45).

11.6.2 Superposition of renewal point processes

For the particular case of superposed renewal point processes, the resulting process
dNR(t) does not belong to the class of renewal point processes, but we may still
solve for the interevent interval density function (Cox & Isham, 1980; Ryu & Lowen,
1996).

ConsiderM independent and identical renewal point processes, with a mean in-
terevent timeE[τ1], interevent-interval probability density functionpτ1(t), and as-
sociated survivor functionSτ1(t) ≡ Pr{τ1 > t} =

∫∞
t

pτ1(u) du. The forward
recurrence timeϑ1(t), defined in Eq. (3.10), is the time that remains to the next event
from an arbitrary starting time. This quantity has a survivor functionSϑ1(t) given by
Eq. (3.11). In terms ofpτ1(t), we therefore have

Sϑ1(t) = E[µ1]
∫ ∞

t

Sτ1(u) du

= E[µ1]
∫ ∞

u=t

∫ ∞

v=u

pτ1(v) dv du

= E[µ1]
∫ ∞

v=t

∫ v

u=t

pτ1(v) dv du

= E[µ1]
∫ ∞

t

(v − t)pτ1(v) dv, (11.46)

which denotes the probability of zero arrivals in the renewal process during a period
of durationt that starts at a random time independent of the process.

ForM independent identical renewal point processes, the probability of zero events
occurring in any of theM processes in a timet is simply the product of the probabil-
ities from the individual processes. Therefore, the forward recurrence-time survivor
function for the superposed process,SϑR(t), becomes

E[µR]
∫ ∞

t

(v − t) pτR(v) dv

= SϑR(t)
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=
[
Sϑ1(t)

]M

= EM [µ1]
[∫ ∞

t

(v − t) pτ1(v) dv

]M

. (11.47)

After two differentiations and some algebra (Ryu & Lowen, 1996), we obtain the
interevent-interval probability density function for the superposed process:

pτR(t) = E[τ1]−(M−1)

[∫ ∞

t

(v − t) pτ1(v) dv

]M−2

×
{

(M − 1)
[∫ ∞

t

pτ1(v) dv

]2

+ pτ1(t)
∫ ∞

t

(v − t) pτ1(v) dv

}
. (11.48)

Two limiting conditions emerge. First, for small interevent times, such that
Pτ1(t) ¿ 1/M , the probability of two events occurring in the same constituent
process approaches zero. In this case we have

SϑR(t) =
[
Sϑ1(t)

]M

≈ (
1− E[µ1] t

)M

≈ 1−M E[µ1] t = 1− E[µR] t
≈ exp

(−E[µR] t
)
. (11.49)

This result is the same as that obtained for a homogeneous Poisson process with the
same rate; in fact,dNR(t) resembles the homogeneous Poisson process over these
short time scales. Second, for long times, such thatSτ1(t) ¿ 1, we similarly find
thatSτR(t) ¿ 1. In particular,Pτ1(t) = 1 implies thatPτR(t) = 1.

We now specialize to the particular case of a fractal renewal point process with
abrupt cutoffs, in which case the interevent-interval probability density function as-
sumes the form of Eq. (7.1); we focus on the limitA ¿ t ¿ B:

pτ1(t) =
γ

A−γ −B−γ ×
{

t−(γ+1) for A < t < B
0 otherwise.

(11.50)

For 0 < γ < 1, to first order the forward recurrence-time survivor function follows
the form

Sϑ1(t) ≈ 1− γ−1(t/B)1−γ , (11.51)

so that

SϑR(t) ≈ [
1− γ−1(t/B)1−γ

]M ≈ 1−Mγ−1(t/B)1−γ . (11.52)
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Substituting Eq. (11.52) into Eq. (3.12), and taking another derivative, yields the
corresponding interevent interval probability density function

pτR(t) ≈ γAγt−(γ+1), (11.53)

identical topτ1(t) over that time scale. Taken together, Eqs. (11.52) and (11.53)
indicate that for0 < γ < 1 andA ¿ t ¿ B, the time statistics for the superposed
process resemble those of a single fractal renewal process, with the upper cutoffB
replaced by the smaller valueM1/(γ−1)B. The superposition process modifies the
interval probability density only slightly for moderate values ofM . Achieving an
approximate Poisson-process form requires on the order ofM = (B/A)1−γ fractal
renewal processes.

The situation changes for larger values ofγ. Forγ > 1, the same procedure yields

Sϑ1(t) ≈ γ−1(t/A)1−γ (11.54)

SϑR(t) ≈ γ−M (t/A)M(1−γ) (11.55)

pτR(t) ≈ c γ1−MAct−(c+1), (11.56)

where we definec ≡ 1 + M(γ − 1) and note thatc > 1. Thus, the survivor
function of the superposition decays progressively more quickly as we add more
fractal renewal processes, approaching the exponential limit of the Poisson process
far more quickly than in the domain0 < γ < 1. For γ = 1, intermediate results
obtain; the superposition approaches Poisson form slowly asM increases, but not as
slowly as whenγ < 1.

Problems

11.1 Shuffled and exponentialized point processesShow that shuffling a fractal-
based point process and transforming its intervals to an exponentially distributed
form, in either order, must result in a homogeneous Poisson process.

11.2 Superposed fractal-based point processesConsider two fractal-based point
processes,dN1(t) anddN2(t), whose superposition yields another processdNR(t).

11.2.1. Under what conditions doesdNR(t) precisely follow the power-law form
of Eq. (5.44)?

11.2.2. Under those conditions, findαR, E[µR], andfSR in terms of the related
parameters fordN1(t) anddN2(t).

11.2.3. Under what set of more-relaxed conditions doesdNR(t) closely approx-
imate a fractal form?

11.3 Interval transformation and shuffling as surrogatesBoth interevent-interval
transformation (Sec. 11.4) and shuffling (Sec. 11.5) modify fractal-based point pro-
cesses in ways that yield insights into the processes under study. Suppose that we
evaluate the spectrum of a point process before and after shuffling, and compare the
results. For simplicity, we consider three classes of results: (1) shuffling leaves the
spectrum essentially unchanged; (2) shuffling effectively eliminates the fractal char-
acter of the process; and (3) shuffling decreases the fractal onset frequency, thereby
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leading to a process with decreased, but still present, fractal content. We also examine
the same three classes for the interevent-interval transformation. Consider each of
the nine possible pairs of classes. Determine which pairs cannot occur and, for the
others, describe processes that could yield those results.

11.4 Fractal content of superposed point processesWe can quantify the fractal
content in a fractal-based point process, discussed in Prob. 11.3, with a dimensionless
quantity such ascf ≡ fS/E[µ], which remains constant under time dilation. Consider
a fractal-based point processdNR(t), formed by the superposition of two component
fractal-based point processesdN1(t) anddN2(t) with the same fractal exponentα.
Under what conditions doescfR equal or exceed bothcf1 andcf2?

11.5 Statistics of a dilated and deleted point processWe can scale the time axis
in a fractal-rate point processdN1(t) to effectively double its rate, yieldingdN2(t),
and we can then delete half of the events indN2(t) to yield a new processdNR(t)
closely related to the first. Assume that the deletion process does not selectively affect
the low-frequency components of the point process.

11.5.1. How do the mean rateE[µ], fractal exponentα, and fractal onset frequency
fS compare fordNR(t) anddN1(t)?

11.5.2. Suppose thatdN1(t) is (a) a homogeneous Poisson process or (b) an
integrate-and-reset process with constant rate; and that we delete events either (1)
randomly and independently and retaining half of them or (2) by decimation in which
every other event is retained. What type of point-process results in each of the four
cases?

11.6 Homogeneous Poisson process modified by fixed and stochastic dead time
Suppose a homogeneous Poisson processdN1(t) with rateµ1 experiences a fixed
dead time of durationτf , followed by an exponentially distributed stochastic dead
time of expected durationτr. The resulting processdNR(t) becomes a dead-time-
modified homogeneous Poisson process. Determine the nature of this point process,
as well as the mean and variance of the interevent interval, the rate, the interevent-
interval probability density, and the associated characteristic function. Finally, for
the special caseτr = 0, find the spectrum.

11.7 Forward-recurrence-time survivor function for a fractal renewal process
Prove Eqs. (11.51)–(11.56) in greater detail.

11.8 Modification of a point process by block shuffling and event-time displace-
ment Consider a doubly stochastic Poisson processdN1(t) driven by a fractal
rate. The spectrum of this process,SN1(f), follows Eq. (5.44a) over a wide range of
frequencies.

11.8.1. Now suppose we divide the time axis into contiguous blocks of duration
T . Effect a block shuffle of the process by taking all interevent intervals that begin in
each block and shuffle them with each other, but not with intervals beginning in other
blocks. ForfST = 100, sketch the spectrumSNR(f) of the resulting block-shuffled
processdNR(t).
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11.8.2. Instead of block shuffling, we now add to each event timetk a Gaussian-
distributed random number with zero mean and standard deviation equal to100

/
fS , as

illustrated in Eq. (11.38). We then sort the displaced event times back into ascending
order and definedNR(t) in terms of the resulting sorted set of event times. Sketch
the spectrumSNR(f) of this displaced processdNR(t).

11.9 Properties of a randomly deleted renewal processLet dN1(t) denote a
renewal point process with interevent-interval probability densitypτ (t).

11.9.1. Show that independently deleting events indN1(t) with a probabilityr
yields another renewal point processdNR(t).

11.9.2. Find the interevent-interval probability density ofdNR(t).
11.9.3. Using characteristic functions, examine the behavior ofdNR(t) for the

specific case wheredN1(t) has the abrupt power-law probability density exhibited
in Eq. (7.1). Focus on the medium-time limitA ¿ t ¿ B. How do results for
0 < γ < 1 andγ ≥ 1 differ?

11.10 Dead-time-modified and decimated Poisson counting distributionsThe
counting distribution for the dead-time-modified homogeneous Poisson process proves
useful in many contexts, including nuclear, neural, and photon counting (DeLotto
et al., 1964; Ricciardi & Esposito, 1966; M̈uller, 1973; Cantor & Teich, 1975; Libert,
1976; Teich & Cantor, 1978; M̈uller, 1981; Prucnal & Teich, 1983). The formula is
considerably more complex than Eq. (4.7) for the Poisson counting distribution as a
result of correlation between the numbers of events in adjacent counting windows,
engendered by the occurrence of the dead-time periods that straddle them. The counts
{Zk(T )} are therefore not independent.

For the nonparalyzable dead-time counter unblocked at the beginning of the count-
ing interval (see Footnote 6 on p. 236), the exact result is (Ricciardi & Esposito, 1966;
Müller, 1974; Prucnal & Teich, 1983):

pZ

(
n;T

)
= Pr

{
N(t + s)−N(s) = n

}

=





n∑
m=0

[
µ1T (1− nτe/T )

]m

m! exp
[− µ1T (1− nτe/T )

]

−
n−1∑
m=0

[
µ1T (1− (n− 1)τe/T )

]m

m! exp
[− µ1T (1− (n− 1)τe/T )

]

for 0 ≤ n < T/τe,

1−
n−1∑
m=0

[
µ1T (1− (n− 1)τe/T )

]m

m! exp
[− µ1T (1− (n− 1)τe/T )

]

for T/τe ≤ n < T/τe + 1,

0 for n ≥ T/τe + 1,
(11.57)

whereµ1 is the driving rate of the process before the imposition of the fixed dead-
time periodτe. The rate after dead-time modification isE[µR] = µ1/(1+µ1τe) [see
Eq. (11.22)].
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Results for various kinds of dead-time counters are available (Müller, 1973, 1974;
Libert, 1976); exact formulas forequilibrium (stationary) andblocked (ordinary)
counting distributions resemble Eq. (11.57) for theunblocked(shifted or free) result
provided above, but they are more complex. In the usual situation when the mean
count greatly exceeds unity, the differences among the blocked, unblocked, and equi-
librium counting results are, in fact, insubstantial and all three of these processes may
essentially be viewed as stationary equivalents of each other (Libert, 1976).

Decimation of a homogeneous Poisson process with decimation parameterm
yields the integer-order gamma renewal process of indexm (see Sec. 11.2.2 and
Prob. 4.7). In this case, the counting distribution takes the form of a finite sum of
Poisson distributions, provided that the process is turned on att = 0 (Parzen, 1962;
Cox, 1962; Cox & Isham, 1980; Teich et al., 1984, Eq. (A26)):

pZ(n; T ) =
mn+m−1∑

l=mn

(µ1T )l exp (−µ1T )
l!

, n ≥ 0; (11.58)

the rate of the initial Poisson process isµ1 and the decimated rateE[µR] ≈ µ1/m.12

This formula comes about because the integer-order gamma process arises from the
homogeneous Poisson process by permitting everymth event to survive, while delet-
ing intermediate events, as illustrated in Fig. 11.1b).

11.10.1. Simulate (or plot) the counting distribution for the nonparalyzable dead-
time-modified Poisson process forµ1T = 15andµ1τe = 0,0.2, 0.5, and 1.0. Confirm
that the count mean and count variance agree withE[µR]T = µ1T/(1 + µ1τe) and
Var[n] ≈ µ1T/(1 + µ1τe)3, respectively.

11.10.2. Now simulate (or plot) the counting distribution using values ofµ1 that
are adjusted such that the count meanafter dead-time modification isE[µR] T = 15
for all values ofµ1τe. Compare the distributions.

11.10.3. Explain qualitatively how the count mean and variance would differ if
the dead-time operation were imposed on a Poisson process with a slowly varying
fractal rate instead of on a homogeneous Poisson process.

11.10.4. Simulate the counting distribution for a decimated Poisson process with
µ1T = 15 andm = 1, 0.5, 1.5, and 2.0. Confirm that the same curve emerges
from Eq. (11.58) form = 1 and 2 (this equation is suitable only for integer values of
m). Confirm that the count mean and count variance followE[µR] T ≈ µ1T/m and
Var[n] ≈ µ1T/m2, respectively.

11.10.5. Finally, simulate the decimated-Poisson process using values ofµ1 that
are adjusted such that the count meanafter decimation isE[µR] T = 15 for all values
of m. Compare the distributions.

11.11 Amplification of fractal behavior via exponentialization The fractal be-
havior inherent in a 20-hour sequence of heartbeats recorded from a normal human

12 This approximation asymptotically achieves equality as time increases for this renewal process, which
begins with an event. For a starting time selected randomly with respect to the process, the equality holds
for all timest > 0.
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Fig. 11.16 Estimated interevent-interval density,p̂τ (t) vs. interevent intervalt, for an action-
potential sequence recorded from the descending contralateral movement detector, a visual-
systeminterneuron in the locust (Turcott et al., 1995, Fig. 2, pp. 261–262, cell ADA062)
(solid curve). The dotted curve represents results for an exponentialized version of these data.
We show the normalized Haar-wavelet variance for these same data in Fig. 11.17.

subject(heartbeat) (Turcott & Teich, 1996, data set 16273) increases consider-
ably when we exponentialize the original point process. Comparing Figs. 11.10 and
11.11 with Figs. 5.1 and 5.2 illustrates this effect. Explain why this comes about.

11.12 Action-potential statistics in an insect visual-system interneuron: Revisited
The solid curve in Fig. 11.16 displays the estimated interevent-interval density for
a spontaneous sequence of action potentials observed from a locust visual-system
interneuron (the descending contralateral movement detector, Turcott et al., 1995).
The solid curve in Fig. 11.17 shows the estimated normalized Haar-wavelet variance
Â(T ), plotted as a function of the counting timeT , for the same set of data. These
curves were first presented in Figs. 7.8 and 7.9, and Figs. B.4 and B.5, in connection
with Prob. 7.8, where we demonstrated that a fractal renewal point process fails to
describe this spike train in spite of the fact that the estimated interevent-interval density
follows a decaying power-law form.

11.12.1. The dotted curve shown in Fig. 11.16 represents the exponentialized
interevent-interval surrogate data discussed in Sec. 11.4.2. The shuffled surrogate
discussed in Sec. 11.5 is identical to the original data since the interevent-interval
density, by construction, ignores interval ordering. What conclusions can we draw
from these curves with respect to the nature of the underlying point process?
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Fig. 11.17 Estimated normalized Haar-wavelet varianceÂ(T ) vs. counting timeT (sec),
for an action-potential sequence recorded from the descending contralateral movement detec-
tor, a visual-systeminterneuron in the locust (Turcott et al., 1995, Fig. 2, pp. 261–262,
cell ADA062) (solid curve). Dashed and dotted curves represent results for the shuffled and
exponentialized versions of these data, respectively. Unlike the display in Fig. 5.2, the abscissa
reports the counting time in unnormalized form. The interevent-interval density appears in
Fig. 11.16.

11.12.2. The dashed and dotted curves shown in Fig. 11.17 represent, respectively,
the shuffled and exponentialized normalized Haar-wavelet variance surrogate data.
What conclusions about the underlying point process can we draw from the behavior
of these curves?

11.12.3. Verify that the sum of the shuffled and exponentializedexcessnormalized
Haar-wavelet variances,̂A(T )−1, closely approximates theexcessnormalized Haar-
wavelet variance of the original data. What does this signify about the ability of these
two surrogates to achieve their intended goals?

11.12.4. Based on all of this information, speculate on the form of a suitable point-
process model for characterizing the spike train from the descending contralateral
movement detector in the locust.

11.12.5. Figure 11.18 displays generalized-dimension scaling functions for the
interneuron data forq = −1, 0, 1

2 , 1, and 2. Do these curves support your speculation
with respect to a suitable model for the point process, as considered in Prob. 11.12.4?
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Fig. 11.18 Generalized-dimension scaling functions (SF)η̂ q(T ) for various values ofq,
based on Eq. (3.73), for an action-potential sequence recorded from the descending contralat-
eral movement detector, a visual-systeminterneuron in the locust (Turcott et al., 1995,
cell ADA062). The curves resemble each other, and also those for the nonfractal homoge-
neous Poisson process (see Fig. B.3). The interevent-interval density and the normalized Haar-
wavelet variance for these same data, along with their surrogates, are displayed in Figs. 11.16
and 11.17, respectively. A fractal-rate point process describes these data. Analogous curves
for neurotransmitter exocytosis at asynapse appear in Fig. 5.11.
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